datatracker/ietf/stats/utils.py

347 lines
13 KiB
Python

# Copyright The IETF Trust 2017-2020, All Rights Reserved
# -*- coding: utf-8 -*-
import re
import requests
from collections import defaultdict
from django.conf import settings
from django.contrib.auth.models import User
import debug # pyflakes:ignore
from ietf.stats.models import AffiliationAlias, AffiliationIgnoredEnding, CountryAlias, MeetingRegistration
from ietf.name.models import CountryName
from ietf.person.models import Person, Email, Alias
from ietf.person.name import unidecode_name
def compile_affiliation_ending_stripping_regexp():
parts = []
for ending_re in AffiliationIgnoredEnding.objects.values_list("ending", flat=True):
try:
re.compile(ending_re)
except re.error:
pass
parts.append(ending_re)
re_str = ",? *({}) *$".format("|".join(parts))
return re.compile(re_str, re.IGNORECASE)
def get_aliased_affiliations(affiliations):
"""Given non-unique sequence of affiliations, returns dictionary with
aliases needed.
We employ the following strategies, interleaved:
- Stripping company endings like Inc., GmbH etc. from database
- Looking up aliases stored directly in the database, like
"Examplar International" -> "Examplar"
- Case-folding so Examplar and EXAMPLAR is merged with the
winner being the one with most occurrences (so input should not
be made unique) or most upper case letters in case of ties.
Case folding can be overridden by the aliases in the database."""
res = {}
ending_re = compile_affiliation_ending_stripping_regexp()
known_aliases = { alias.lower(): name for alias, name in AffiliationAlias.objects.values_list("alias", "name") }
affiliations_with_case_spellings = defaultdict(set)
case_spelling_count = defaultdict(int)
for affiliation in affiliations:
original_affiliation = affiliation
# check aliases from DB
name = known_aliases.get(affiliation.lower())
if name is not None:
affiliation = name
res[original_affiliation] = affiliation
# strip ending
name = ending_re.sub("", affiliation)
if name != affiliation:
affiliation = name
res[original_affiliation] = affiliation
# check aliases from DB
name = known_aliases.get(affiliation.lower())
if name is not None:
affiliation = name
res[original_affiliation] = affiliation
affiliations_with_case_spellings[affiliation.lower()].add(original_affiliation)
case_spelling_count[affiliation] += 1
def affiliation_sort_key(affiliation):
count = case_spelling_count[affiliation]
uppercase_letters = sum(1 for c in affiliation if c.isupper())
return (count, uppercase_letters)
# now we just need to pick the most popular uppercase/lowercase
# spelling for each affiliation with more than one
for similar_affiliations in affiliations_with_case_spellings.values():
if len(similar_affiliations) > 1:
most_popular = sorted(similar_affiliations, key=affiliation_sort_key, reverse=True)[0]
for affiliation in similar_affiliations:
if affiliation != most_popular:
res[affiliation] = most_popular
return res
def get_aliased_countries(countries):
known_aliases = dict(CountryAlias.objects.values_list("alias", "country__name"))
# add aliases for known countries
for slug, name in CountryName.objects.values_list("slug", "name"):
known_aliases[name.lower()] = name
def lookup_alias(possible_alias):
name = known_aliases.get(possible_alias)
if name is not None:
return name
name = known_aliases.get(possible_alias.lower())
if name is not None:
return name
return possible_alias
known_re_aliases = {
re.compile("\\b{}\\b".format(re.escape(alias))): name
for alias, name in known_aliases.items()
}
# specific hack: check for zip codes from the US since in the
# early days, the addresses often didn't include the country
us_zipcode_re = re.compile(r"\b(AL|AK|AZ|AR|CA|CO|CT|DE|DC|FL|GA|HI|ID|IL|IN|IA|KS|KY|LA|ME|MD|MA|MI|MN|MS|MO|MT|NE|NV|NH|NJ|NM|NY|NC|ND|OH|OK|OR|PA|RI|SC|SD|TN|TX|UT|VT|VA|WA|WV|WI|WY|AS|GU|MP|PR|VI|UM|FM|MH|PW|Ca|Cal.|California|CALIFORNIA|Colorado|Georgia|Illinois|Ill|Maryland|Ma|Ma.|Mass|Massachuss?etts|Michigan|Minnesota|New Jersey|New York|Ny|N.Y.|North Carolina|NORTH CAROLINA|Ohio|Oregon|Pennsylvania|Tx|Texas|Tennessee|Utah|Vermont|Virginia|Va.|Washington)[., -]*[0-9]{5}\b")
us_country_name = CountryName.objects.get(slug="US").name
def last_text_part_stripped(split):
for t in reversed(split):
t = t.strip()
if t:
return t
return ""
known_countries = set(CountryName.objects.values_list("name", flat=True))
res = {}
for country in countries:
if country in res or country in known_countries:
continue
original_country = country
# aliased name
country = lookup_alias(country)
if country in known_countries:
res[original_country] = country
continue
# contains US zipcode
if us_zipcode_re.search(country):
res[original_country] = us_country_name
continue
# do a little bit of cleanup
if len(country) > 1 and country[-1] == "." and not country[-2].isupper():
country = country.rstrip(".")
country = country.strip("-,").strip()
# aliased name
country = lookup_alias(country)
if country in known_countries:
res[original_country] = country
continue
# country name at end, separated by comma
last_part = lookup_alias(last_text_part_stripped(country.split(",")))
if last_part in known_countries:
res[original_country] = last_part
continue
# country name at end, separated by whitespace
last_part = lookup_alias(last_text_part_stripped(country.split()))
if last_part in known_countries:
res[original_country] = last_part
continue
# country name anywhere
country_lower = country.lower()
found = False
for alias_re, name in known_re_aliases.items():
if alias_re.search(country) or alias_re.search(country_lower):
res[original_country] = name
found = True
break
if found:
continue
# unknown country
res[original_country] = ""
return res
def clean_country_name(country_name):
if country_name:
country_name = get_aliased_countries([country_name]).get(country_name, country_name)
if country_name and CountryName.objects.filter(name=country_name).exists():
return country_name
return ""
def compute_hirsch_index(citation_counts):
"""Computes the h-index given a sequence containing the number of
citations for each document."""
i = 0
for count in sorted(citation_counts, reverse=True):
if i + 1 > count:
break
i += 1
return i
def get_meeting_registration_data(meeting):
""""Retrieve registration attendee data and summary statistics. Returns number
of Registration records created."""
num_created = 0
num_processed = 0
response = requests.get(settings.STATS_REGISTRATION_ATTENDEES_JSON_URL.format(number=meeting.number))
if response.status_code == 200:
decoded = []
try:
decoded = response.json()
except ValueError:
if response.content.strip() == 'Invalid meeting':
pass
else:
raise RuntimeError("Could not decode response from registrations API: '%s...'" % (response.content[:64], ))
# for each user identified in the Registration system
# Create a DataTracker MeetingRegistration object
for registration in decoded:
person = None
# capture the stripped registration values for later use
first_name = registration['FirstName'].strip()
last_name = registration['LastName'].strip()
affiliation = registration['Company'].strip()
country_code = registration['Country'].strip()
address = registration['Email'].strip()
matching = MeetingRegistration.objects.filter(meeting_id=meeting.pk, email=address)
if matching.exists():
object = matching.first()
created = False
else:
object = MeetingRegistration.objects.create(meeting_id=meeting.pk, email=address)
created = True
object.first_name=first_name[:200]
object.last_name=last_name[:200]
object.affiliation=affiliation
object.country_code=country_code
object.attended = True
object.save()
# Add a Person object to MeetingRegistration object
# if valid email is available
if object and not object.person and address:
# If the person already exists do not try to create a new one
emails = Email.objects.filter(address=address)
# there can only be on Email object with a unique email address (primary key)
if emails.exists():
person = emails.first().person
# Create a new Person object
else:
try:
# Normalize all-caps or all-lower entries. Don't touch
# others, there might be names properly spelled with
# internal uppercase letters.
if ( ( first_name == first_name.upper() or first_name == first_name.lower() )
and ( last_name == last_name.upper() or last_name == last_name.lower() ) ):
first_name = first_name.capitalize()
last_name = last_name.capitalize()
regname = "%s %s" % (first_name, last_name)
# if there are any unicode characters decode the string to ascii
ascii_name = unidecode_name(regname)
# Create a new user object if it does not exist already
# if the user already exists do not try to create a new one
users = User.objects.filter(username=address)
if users.exists():
user = users.first()
else:
# Create a new user.
user = User.objects.create(
first_name=first_name[:30],
last_name=last_name[:30],
username=address,
email=address,
)
try:
person = user.person
except Person.DoesNotExist:
aliases = Alias.objects.filter(name=regname)
if aliases.exists():
person = aliases.first().person
else:
# Create the new Person object.
person = Person.objects.create(
name=regname,
ascii=ascii_name,
user=user,
)
# Create an associated Email address for this Person
try:
email = Email.objects.get(person=person, address=address[:64])
except Email.DoesNotExist:
email = Email.objects.create(person=person, address=address[:64], origin='registration: ietf-%s'%meeting.number)
# If this is the only email address, set primary to true.
# If the person already existed (found through Alias) and
# had email addresses, we don't do this.
if Email.objects.filter(person=person).count() == 1:
email.primary = True
email.save()
except:
debug.show('first_name')
debug.show('last_name')
debug.show('regname')
debug.show('user')
debug.show('aliases')
raise
# update the person object to an actual value
object.person = person
object.save()
if created:
num_created += 1
num_processed += 1
else:
raise RuntimeError("Bad response from registrations API: %s, '%s'" % (response.status_code, response.content))
num_total = MeetingRegistration.objects.filter(meeting_id=meeting.pk).count()
if meeting.attendees is None or num_total > meeting.attendees:
meeting.attendees = num_total
meeting.save()
return num_created, num_processed, num_total