datatracker/ietf/stats/utils.py
Ryan Cross 304d04e674 Add Registration migrations
- Legacy-Id: 13184
2017-04-04 22:06:17 +00:00

232 lines
7.6 KiB
Python

import re
import requests
from collections import defaultdict
from django.conf import settings
from ietf.stats.models import AffiliationAlias, AffiliationIgnoredEnding, CountryAlias, Registration
from ietf.name.models import CountryName
def compile_affiliation_ending_stripping_regexp():
parts = []
for ending_re in AffiliationIgnoredEnding.objects.values_list("ending", flat=True):
try:
re.compile(ending_re)
except re.error:
pass
parts.append(ending_re)
re_str = ",? *({}) *$".format("|".join(parts))
return re.compile(re_str, re.IGNORECASE)
def get_aliased_affiliations(affiliations):
"""Given non-unique sequence of affiliations, returns dictionary with
aliases needed.
We employ the following strategies, interleaved:
- Stripping company endings like Inc., GmbH etc. from database
- Looking up aliases stored directly in the database, like
"Examplar International" -> "Examplar"
- Case-folding so Examplar and EXAMPLAR is merged with the
winner being the one with most occurrences (so input should not
be made unique) or most upper case letters in case of ties.
Case folding can be overridden by the aliases in the database."""
res = {}
ending_re = compile_affiliation_ending_stripping_regexp()
known_aliases = { alias.lower(): name for alias, name in AffiliationAlias.objects.values_list("alias", "name") }
affiliations_with_case_spellings = defaultdict(set)
case_spelling_count = defaultdict(int)
for affiliation in affiliations:
original_affiliation = affiliation
# check aliases from DB
name = known_aliases.get(affiliation.lower())
if name is not None:
affiliation = name
res[original_affiliation] = affiliation
# strip ending
name = ending_re.sub("", affiliation)
if name != affiliation:
affiliation = name
res[original_affiliation] = affiliation
# check aliases from DB
name = known_aliases.get(affiliation.lower())
if name is not None:
affiliation = name
res[original_affiliation] = affiliation
affiliations_with_case_spellings[affiliation.lower()].add(original_affiliation)
case_spelling_count[affiliation] += 1
def affiliation_sort_key(affiliation):
count = case_spelling_count[affiliation]
uppercase_letters = sum(1 for c in affiliation if c.isupper())
return (count, uppercase_letters)
# now we just need to pick the most popular uppercase/lowercase
# spelling for each affiliation with more than one
for similar_affiliations in affiliations_with_case_spellings.itervalues():
if len(similar_affiliations) > 1:
most_popular = sorted(similar_affiliations, key=affiliation_sort_key, reverse=True)[0]
for affiliation in similar_affiliations:
if affiliation != most_popular:
res[affiliation] = most_popular
return res
def get_aliased_countries(countries):
known_aliases = dict(CountryAlias.objects.values_list("alias", "country__name"))
# add aliases for known countries
for slug, name in CountryName.objects.values_list("slug", "name"):
known_aliases[name.lower()] = name
def lookup_alias(possible_alias):
name = known_aliases.get(possible_alias)
if name is not None:
return name
name = known_aliases.get(possible_alias.lower())
if name is not None:
return name
return possible_alias
known_re_aliases = {
re.compile(u"\\b{}\\b".format(re.escape(alias))): name
for alias, name in known_aliases.iteritems()
}
# specific hack: check for zip codes from the US since in the
# early days, the addresses often didn't include the country
us_zipcode_re = re.compile(r"\b(AL|AK|AZ|AR|CA|CO|CT|DE|DC|FL|GA|HI|ID|IL|IN|IA|KS|KY|LA|ME|MD|MA|MI|MN|MS|MO|MT|NE|NV|NH|NJ|NM|NY|NC|ND|OH|OK|OR|PA|RI|SC|SD|TN|TX|UT|VT|VA|WA|WV|WI|WY|AS|GU|MP|PR|VI|UM|FM|MH|PW|Ca|Cal.|California|CALIFORNIA|Colorado|Georgia|Illinois|Ill|Maryland|Ma|Ma.|Mass|Massachuss?etts|Michigan|Minnesota|New Jersey|New York|Ny|N.Y.|North Carolina|NORTH CAROLINA|Ohio|Oregon|Pennsylvania|Tx|Texas|Tennessee|Utah|Vermont|Virginia|Va.|Washington)[., -]*[0-9]{5}\b")
us_country_name = CountryName.objects.get(slug="US").name
def last_text_part_stripped(split):
for t in reversed(split):
t = t.strip()
if t:
return t
return u""
known_countries = set(CountryName.objects.values_list("name", flat=True))
res = {}
for country in countries:
if country in res or country in known_countries:
continue
original_country = country
# aliased name
country = lookup_alias(country)
if country in known_countries:
res[original_country] = country
continue
# contains US zipcode
if us_zipcode_re.search(country):
res[original_country] = us_country_name
continue
# do a little bit of cleanup
if len(country) > 1 and country[-1] == "." and not country[-2].isupper():
country = country.rstrip(".")
country = country.strip("-,").strip()
# aliased name
country = lookup_alias(country)
if country in known_countries:
res[original_country] = country
continue
# country name at end, separated by comma
last_part = lookup_alias(last_text_part_stripped(country.split(",")))
if last_part in known_countries:
res[original_country] = last_part
continue
# country name at end, separated by whitespace
last_part = lookup_alias(last_text_part_stripped(country.split()))
if last_part in known_countries:
res[original_country] = last_part
continue
# country name anywhere
country_lower = country.lower()
found = False
for alias_re, name in known_re_aliases.iteritems():
if alias_re.search(country) or alias_re.search(country_lower):
res[original_country] = name
found = True
break
if found:
continue
# unknown country
res[original_country] = ""
return res
def clean_country_name(country_name):
if country_name:
country_name = get_aliased_countries([country_name]).get(country_name, country_name)
if country_name and CountryName.objects.filter(name=country_name).exists():
return country_name
return ""
def compute_hirsch_index(citation_counts):
"""Computes the h-index given a sequence containing the number of
citations for each document."""
i = 0
for count in sorted(citation_counts, reverse=True):
if i + 1 > count:
break
i += 1
return i
def get_registration_data(meeting):
""""Retrieve registration attendee data and summary statistics. Returns number
of Registration records created."""
num_created = 0
response = requests.get(settings.REGISTRATION_ATTENDEES_BASE_URL + meeting.number)
if response.status_code == 200:
for registration in response.json():
object, created = Registration.objects.get_or_create(
meeting_id=meeting.pk,
first_name=registration['FirstName'],
last_name=registration['LastName'],
affiliation=registration['Company'],
country=registration['Country'])
if created:
num_created += 1
return num_created